Over the years, laboratory information systems (LIS) have evolved from mere repositories of laboratory data to informatics systems with decision support capabilities. At the same time, the software programs on today’s laboratory instruments have become more complex. They often come with integrated decision support software that perform auto-verification, manage quality control (QC), setup reflex parameters, and generate data for inter-lab quality comparisons. Despite these advances, there is still room for improvement, especially in attaining optimum interconnectivity of laboratory instruments and hospital information systems (HIS). This situation has led to the use of middleware, software from third-party vendors that functions as the missing link between the LIS, laboratory instruments, electronic medical records (EMR), and the HIS.
To increase productivity and improve patient care, labs that want to take full advantage of today's advanced informatics systems need to use a combination of all these tools. But leveraging informatics tools from these various sources has the potential to introduce unexpected errors that can harm patients.
Tracking Software Errors
While numerous case studies have been published about the benefits of informatics tools to boost productivity and improve patient care, far fewer have been published about the harm that software errors can cause. Most EMRs, middleware, and LISs, with the exception of blood bank information systems, do not require 510(k) clearance from the Food and Drug Administration (FDA). Consequently, users do not need to report errors, nor does the FDA track them.
An Institute of Medicine study showed that software design problems and failures accounted for 10% of all 510(k) Class I recalls from 2005-2009 (1,2). According to FDA, Class I recalls are "a situation in which there is a reasonable probability that the use of or exposure to a volatile product will cause serious adverse health consequences or death." For example, one software program was recalled because the unit of measurement for a blood glucose system changed unexpectedly following a brief loss of power or accidently when users reset the date and time of the instrument.
Another problem with software errors is that they can occur without warning. Such errors can go undetected for months because the normal tools that labs use to detect QC, proficiency testing, and calibration verification errors are usually ineffective in detecting software errors.
Example of Software Errors Involving Laboratory Data and Results
Minimizing the Risk
What can labs do to minimize the risk and impact of informatics errors? The first step is to develop a comprehensive risk management plan that includes process review, validation, and training. Labs also should improve their communication and visibility with clinicians, who frequently are the first to detect software errors. Laboratory leadership needs to encourage users of laboratory data, including clinicians, nurses, and pharmacists to report suspicious results back to the lab. Labs can achieve greater visibility and communication with these staff by participating in department staff meetings, focus groups, and in hospital-wide initiatives.
Due to the complexity of laboratory testing, it is unlikely that any individual in the lab has a full understanding of all the software. Therefore it is important to take an interdisciplinary approach to risk management. The LIS manager, sections supervisors, the laboratory director, and laboratory staff all need to work together to identify steps where errors can occur and implement processes to prevent them. Some examples include verifying INR manually after updating the ISI and calibration, manually reviewing all results after a software upgrade, and verifying that all barcodes are read correctly after new label printers are installed.
While laboratory accrediting agencies have requirements for information system validation, the requirements often represent the minimum needed to meet the regulation and may not be tough enough for labs with sophisticated software. The Clinical and Laboratory Standards Institute has published various in-depth guidelines concerning LIS and software validation that labs should consult (3). Implementing more rigorous validation requirements will not prevent all software errors; however, it will increase the chances of detecting errors at an earlier stage in the process.
Finally, the growing complexity of laboratory informatics means that labs must increase their focus on training. Labs should develop training programs in informatics to ensure that every staff member has a full understanding of the basic functionality of each system, how different systems interconnect, downtime procedures, and troubleshooting. Aside from an initial training program, labs can improve their staff’s understanding of the various systems by involving them in the validation and periodic performance verification process. Since lab staff might not be aware of the risks associated with informatics, laboratory management must emphasize that computers are imperfect and therefore subject to errors. Lab management also must encourage their staff to follow-up and investigate any suspicious results.
Investing in Informatics
The recent advancements in informatics have allowed labs to tackle the ongoing challenge of providing higher quality patient care at a lower cost. By developing a greater understanding of today’s informatics tools and their limitations, laboratorians can safely improve patient safety and boost productivity.